skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Kulic, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carlone, Luca; Kulic, Dana; Venture, Gentiane; Strader, Jared (Ed.)
    The central line dressing change is a life-critical procedure performed by nurses to provide patients with rapid infusion of fluids, such as blood and medications. Due to their complexity and the heavy workloads nurses face, dressing changes are prone to preventable errors that can result in central line-associated bloodstream infections (CLABSIs), leading to serious health complications or, in the worst cases, patient death. In the post-COVID-19 era, CLABSI rates have increased, partly due to the heightened nursing workload caused by shortages of both registered nurses and nurse educators. To address this challenge, healthcare facilities are seeking innovative nurse training solutions to complement expert nurse educators. In response, we present the design, development and evaluation of a robotic tutoring system, ASTRID: the Automated Sterile Technique Review and Instruction Device. ASTRID, which is the outcome of a two-year participatory design process, is designed to aid in the training of nursing skills essential for CLABSI prevention. First, we describe insights gained from interviews with nurse educators and nurses, which revealed the gaps of current training methods and requirements for new training tools. Based on these findings, we outline the development of our robotic tutor, which interacts with nursing students, providing real-time interventions and summary feedback to support skill acquisition. Finally, we present evaluations of the system's performance and perceived usefulness, conducted in a simulated clinical setting with nurse participants. These evaluations demonstrate the potential of our robotic tutor in nursing education. Our work highlights the importance of participatory design for robotics systems, and motivates new avenues for foundational research in robotics. 
    more » « less
    Free, publicly-accessible full text available June 21, 2026
  2. Liu, Karen; Kulic, Dana; Ichnowski, Jeff (Ed.)
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance. 
    more » « less
  3. Liu, Karen; Kulic, Dana; Ichnowski, Jeff (Ed.)
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance. 
    more » « less